Mar. 18, 2013 ? Microbes from the human mouth are telling Oak Ridge National Laboratory scientists something about periodontitis and more after they cracked the genetic code of bacteria linked to the condition.
The finding, published in Proceedings of the National Academy of Sciences, profiles the SR1 bacteria, a group of microbes present in many environments, ranging from the mouth to deep within Earth, that have never been cultivated in the laboratory. Human oral SR1 bacteria are elevated in periodontitis, a disease marked by inflammation and infection of the ligaments and bones that support the teeth.
Scientists also found that the SR1 bacteria employ a unique genetic code in which the codon UGA -- a sequence of nucleotides guiding protein synthesis -- appears not to serve its normal role as a stop code. In fact, scientists found that UGA serves to introduce a glycine amino acid instead.
"This is like discovering that in a language you know well there is a dialect in which the word stop means go," said co-author Mircea Podar of the Department of Energy lab's Biosciences Division. Podar and Dieter S?ll of Yale University led the team that also included scientists from DOE's Joint Genome Institute who contributed to the analysis of the single-cell sequencing data.
The researchers believe the altered genetic code limits the exchange of genes between SR1 and other bacteria because they use a different genetic alphabet.
"In the big pool of bacteria, genes can be exchanged between species and can contribute to increased antibiotic resistance or better adaptation to living in humans," Podar said. "Because SR1 has a change in its genetic alphabet, its genes will not function in other microbes."
Podar and colleagues envision this work providing a path toward a better understanding of microbiological factors of periodontitis as well as to the establishment of a framework to help scientists interpret genomic data from this bacterium and others that have the same altered genetic code.
"So far, no one has been able to isolate and cultivate this type of bacterium," said Podar, who noted that there are bugs in our mouth that we have no clue about and, until now, this was one of them. "The genetic information obtained by sequencing one single cell may offer researchers a key to 'domesticating' these organisms and studying them in the laboratory."
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by DOE/Oak Ridge National Laboratory.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- James H. Campbell, Patrick O?Donoghue, Alisha G. Campbell, Patrick Schwientek, Alexander Sczyrba, Tanja Woyke, Dieter S?ll, and Mircea Podar. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. PNAS, March 18, 2013 DOI: 10.1073/pnas.1303090110
Note: If no author is given, the source is cited instead.
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.
godspell media matters hana taylor momsen xbox live update joan rivers gary carter dies
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.